FMC Sleep and Respiration Rounds

Presented By

Patrick Hanly, MD, FRCPC, D, ABSM Director, FMC Sleep Centre University of Calgary

Wednesday, October 2, 2019

Sleep and Respiration Rounds

Sleep Apnea in Patients with Renal Failure

Presented By

Patrick Hanly, MD, FRCPC, D, ABSM Director, FMC Sleep Centre University of Calgary

Wednesday, October 2, 2019

Lunch: 11:30am Presentation: 12:00-1:00pm

Room 01500

O'Brien Centre Health Sciences Centre

The Sleep and Respiration Rounds in the division of Respiratory Medicine at the University of Calgary is a selfapproved group learning activity (Section 1) as defined by the Maintenance of Certification Program of the Royal College of Physicians and Surgeons of Canada.

Sleep Apnea and Kidney Disease -A bidirectional relationship

Patrick J Hanly MD, FRCPC, DABSM

Sleep Centre, Foothills Medical Centre, University of Calgary

WSS, September 2019

Disclosures

Type of Potential Conflict	Details of Potential Conflict
Grant/Research Support	Philips Respironics (equipment and financial)
Consultant	Dream Sleep Respiratory Services, BresoTec
Speakers' Bureaus	
Financial support	
Other	

Sleep and Renal Function: Bidirectional Relationship

Chronic Kidney Disease (CKD): Definition

GFR = Glomerular Filtration Rate (ml/min/1.73m²)

Sleep and Renal Function: Bidirectional Relationship

- Biological plausibility
- Association vs Causality

OSA is common in CKD

Nocturnal Hypoxemia (SaO2<90% for ≥12% of monitoring)

Nicholl, Chest 2012;141:1422-1430

Animal Model: Hypoxemia causes intra-renal hypoxia

Biceps Femoris

Arterial Oxygen Content (% Change)

- Ventilated rabbit, denervated kidney
- Systemic hypoxemia / Reduced Do₂
- Tissue Po₂ fell progressively (detected when CaO₂ fell 4-8%)
- Vo₂ remained stable despite reduced Do₂
- No hyperemic response to hypoxia

Kidney susceptible to tissue hypoxia, even during mild hypoxemia

Evans, Am J Physiol Regul Integr Comp Physiol 2011;300:R931-R940

OSA: Sympathetic Nervous System (SNA)

Does intermittent hypoxia effect SNA in the kidney?

Somers, J Clin Invest, 1995; 96:1896-1904

Rats: Chronic Intermittent Hypoxia (CIH) x 3wks, 8hr/day

- Renal SNA (RSNA) response to hypoxia

Huang, 2009: Respiratory Physiology & Neurobiology, 166,:102–106

Hypoxia: RSNA: Renal HD

<u>Rabbit model (ventilated)</u>

Denton, J Am Soc Nephrol, 13:27-34,2002

- Room air, Moderate hypoxia(
), Severe hypoxia
- Left kidney exposed
 - Renal nerve recording (RSNA)
 - Glomerular resistance: Pre-Glom & Post Glom

Hypoxia and Renin-Angiotensin System (RAS)

OSA

- Chronic Hypoxia Hypothesis

Renal Hemodynamics & Renal RAS

- Renal hemodynamics

 Baseline RPF, GFR, FF (GFR/RPF)
 - FF = Surrogate marker of glomerular pressure
- Renal RAS

– RPF response to AnglI

· *∆RPF* = *Surrogate marker of renal RAS activity*

Filtration Fraction in OSA Patients & Obese Controls

Zalucky, 2015; Am J Respir Crit Care Med 192:873-80

		<u>Severe</u>	<u>Moderate</u>	<u>Control</u>
•	# patients	14	17	12
•	Age (yrs)	47 ± 11	49 ± 10	42 ± 11
•	Men (%)	57	71	33
•	% Caucasian	93	59	100
•	BMI (kg/m2)	43 ± 5.5*	33 ± 6.7	39 ± 7.5
•	RDI (/hr)	64 ± 26*	40.4 ± 18.6†	5 ± 2.3
•	Mean SaO2 (%)	84 ± 4.4*	91 ± 0.2†	93 ± 1.4
•	SaO2<90% (%)	77 ± 14.7*	24.6 ±1 0.3†	2.2 ± 3.8
•	ERPF (ml/min)	674 ± 88	689 ± 121	805 ± 221
•	GFR (ml/min)	106 ± 9.6	126 ± 37.8	107 ± 15.2
•	FF	16 ± 1.5†	19 ± 6.6†	14 ± 2.6

OSA is associated with Glomerular Hypertension

Renal RAS in OSA Patients & Obese Controls

- Response of RPF to Angll infusion

Renal RAS is up-regulated in OSA independent of obesity, and in proportion to the severity of hypoxia

Impact of CPAP: Filtration Fraction

Reduced FF = Decreased Glomerular Pressure

Nicholl, Am J Respir Crit Care Med 2014;190:572-580

Impact of CPAP: Renal RAS - Response of RPF to Angll infusion

Nicholl, Am J Respir Crit Care Med 2014;190:572-580

Effect of OSA on the Kidney

Perazella, M. A. & Coca, S. G. (2013) Nat. Rev. Nephrol.

Sleep and Renal Function: Bidirectional Relationship

- Biological plausibility
- Association vs Causality

Is OSA associated with CKD progression ?

Ahmed, PLoS One 2011;6:19029

Is OSA associated with CKD progression ?

• 858 patients, 44% had nocturnal hypoxemia

Rapid Decline GFR (≥4ml/min/1.73m²/yr)

	Unadjusted	Multivariate	Multivariate
	Model	adjusted model [†]	adjusted model [‡]
	OR [95% CI]	OR [95% CI]	OR [95% CI]
Nocturnal Hypoxia	6.32 [3.03-13.20]	3.38 [1.53-7.45]	2.89 [1.25-6.67]

*[‡] Adjusted for RDI, age, BMI, diabetes and heart failure

OSA: Risk of Incident CKD

- Cohort definition

 eGFR > 60 *without* a diagnosis of OSA
- Exposure (Oct 2004 Sept 2006)
 - Incident OSA ± CPAP
- Outcomes
 - Incident CKD: eGFR<60 twice, and >25% decrease vs baseline
 - Rate of decline in renal function
 - Slope of change in eGFR
 - Rapid deterioration in eGFR (>5 ml/min/1.73m²/y)
- Follow up period (median 7.74 yrs)

OSA: Risk of Incident CKD

- Three groups: <u>No OSA</u> <u>OSA</u> <u>OSA+CPAP</u>
- Incident CKD
 - Event rate 10% 25% 29%
 - HR (OSA, no tx) 2.27 (CI 2.19-2.36)
 - HR (OSA+CPAP) 2.79 (CI 2.48-3.13)
- Decline in renal function
 eGFR slope
 -0.41
 -0.61
 -0.87
- Rapid decline
 - OR (OSA, no tx) 1.3 (CI 1.24-1.35)
 - OR (OSA+CPAP) 1.28 (CI 1.09-1.5)

Molnar, Thorax 70:888-895, 2015

CPAP: Impact on renal function

- Sub-study of SAVE (<u>Sleep Apnea & cardioVascular Endpoints</u>) trial
 200 pts, AHI 15-29: randomized CPAP vs usual care
 - Follow up: 4.3 (CPAP) and 4.5 (usual care) years
 - Primary outcome: Annual rate of decline of eGFR
- Analysis
 - Intention to treat: CPAP adherence 4±2.6 hrs/night
 - Per protocol: Good CPAP adherence (≥4 hrs/night)
 Poor CPAP adherence (<4 hrs/night)

No CPAP (usual care)

Loffler, Am J Respir Crit Care Med, 2017;

ΔGFR: Annual Rate of Decline

Loffler, Am J Respir Crit Care Med, 2017;

Sub-study of SAVE: Limitations

- Patient population
 - Underpowered for primary outcome
 - Majority (≈ 90%) patients did not have CKD
- Risk for progression of renal failure was low
 - Low prevalence of diabetes (≈ 25%)
 - Low prevalence albuminuria (≈ 10%)
- Renal insult modest
 - Nocturnal hypoxemia mild (rarely < 85%)
 - ACEI's (≈ 90%) and ARB's (≈ 70%)

OSA: Risk of CKD

- Are we studying the right population?
- Sleep clinic OSA cohort
 - More symptomatic (sleepiness)
 - More severe hypoxemia ± hypoventilation
- Nephrology clinic
 - More risk factors for CKD
 - Established and active kidney disease

Prevalence of OSA patients <u>*at risk*</u> of CKD progression - CSCN OSA Cohort (n=727)

		Albumin:Creatinine Ratio		
		A1: Normal-to- Mild increase <3 mg/mmol	A2: Moderate increase 3-30 mg/mmol	A3: Severe increase >30 mg/mmol
	≥90	237 (32.6)	52 (7.2)	8 (1.1)
	60-89	306 (42.1)	44 (6.1)	7 (1.0)
GFR	45-59	40 (5.5)	6 (0.8)	3 (0.4)
//////////////////////////////////////	30-44	9 (1.2)	5 (0.7)	2 (0.3)
	15-29	2 (0.3)	3 (0.4)	2 (0.3)
	<15	1 (0.1)	0 (0)	0 (0)

184 patients (25%) at moderate to high risk of CKD progression Beaudin, 2019, WSS, Sept 23:5:30-7:00
RCT: Treatment of OSA in patients with CKD: - Impact on kidney function

Rimke, BMJ Open, 2019:9:e024632

Why is this important ?

- Impact of CKD/ESRD on CVS outcomes

CKD associated with worse Outcomes

Go AS, NEJM 2004;351:1296-305

eGFR & ACR: All-Cause and CVS Mortality

- Meta-analysis, 21 gen population cohorts
 - >1000 pts, baseline eGFR and ACR/dipstick
 - Mortality (all-cause and CVS)
 - Excluded studies CVS disease or risk factors
- 14 studies with ACR: 105,872 pts
 - Median age 61 yrs
 - Median follow up 7.9 years

CKD Prognosis Consortium, Lancet 2010, 375:2073-81

CKD Prognosis Consortium, Lancet 2010, 375:2073-81

eGFR and categorical albuminuria (ACR)

eGFR and albuminuria associated with mortality independently of each other (no evidence of interaction) independently of traditional CVS risk factors (excluded)

CKD Prognosis Consortium, Lancet 2010, 375:2073-81

Albuminuria (UACR) and All-Cause Mortality -*Adjusted for co-morbidities*

Kovesdy, J Am Coll Cardiol 2013;61:1626-33

CKD: Life expectancy per eGFR and ACR stage

Dx CKD 4,5 in middle age reduces life expectancy by approx 15 yrs Dx DM ·····approx 8 yrs

Gansevoort, Lancet 2013;382:339-52

CKD: Cause of death per eGFR and ACR stage

Gansevoort, Lancet 2013;382:339-52

Why is this important ?

- Impact of CKD/ESRD on CVS outcomes

ESRD: OSA and CVS morbidity/mortality - *Hemodialysis*

- 94 CHD pts, 64±1 yr, BMI 22±1, 53% male
- Overnight oximetry with sleep log
 SDB: 3% ODI>5

- Primary outcome
 - First CVS event (fatal or non-fatal)
 - All cause mortality

Masuda, Nephrol Dialy Transplant 2011;26:2289-2295

ESRD: OSA and CVS morbidity/mortality -Nocturnal Hypoxemia

Masuda, Nephrol Dialy Transplant 2011;26:2289-2295

ESRD: OSA and CVS morbidity/mortality - *Median follow up 55*±2 *months*

Masuda, Nephrol Dialy Transplant 2011;26:2289-2295

Sleep and Renal Function: Bidirectional Relationship

ESKD: Renal Replacement Therapy (RRT) - Impact on sleep apnea

- Standard RRT
 - Conventional hemodialysis (CHD)
 - Chronic ambulatory peritoneal dialysis (CAPD)
- Intensive RRT
 - Nocturnal hemodialysis (NHD)
 - Nocturnal peritoneal dialysis (NPD)
 - Kidney transplant

Kennedy 2018, J Nephrol;31:61-70

CHD: Rostral fluid shift

• 26 ESKD pts, CHD, 45±15 yrs, BMI 27±8

- Overnight PSG
 AHI≥15: 12 pts (46%)
- Overnight change
 - Leg fluid volume (LFV)
 - Neck circumference (NC)

Elias 2012, Nephrol Dial Transplant;27:1569-1573

CHD: Rostral fluid shift

Independent variable	Correlation coefficient (r)	r^2	Р
Male gender	0.322	0.104	0.024
Change in LFV	-0.356	0.127	0.021
Age Total model	0.403 0.802	0.162	0.0011

Elias 2012, Nephrol Dial Transplant;27:1569-1573

CHD: Rostral fluid shift - Dependent on fluid overload

Ogna 2015, Clin J Am Soc Nephrol;10:1002-1010

CHD: Rostral fluid shift - Dependent on fluid overload

	Multivariate Linear Regression		
Factor	Change in OAHI (no./h) β (95% CI)	P Value	
OAHI pre-HD (no /h)	0.3 (0.0 to 0.5)	0.05	
Fluid overload pre-HD (L)	6.5 (1.6 to 11.4)	0.01	
Δ Fluid overload (L) Δ Nocturnal rostral fluid shift (L)	2.1 (-5.1 to 9.2) 3.1 (-15.3 to 21.6)	0.54 0.72	

Fluid overload pre-hemodialysis strongest predictor of reduction in AHI following CHD

Ogna 2015, Clin J Am Soc Nephrol;10:1002-1010

CHD: Ultrafiltration

- 15 pts, CHD, 54±10 yrs, BMI 25±5
- PSG: AHI 44±20; 10 OSA, 5 CSA
- Bioelectrical impedance: ECFV
- Ultrafiltration without dialysis
 - -2.17±0.45 L removed
 - No change in urea

Lyons 2015, Am J Respir Crit Care Med;11:1287-1294

CHD: Ultrafiltration(UF)

Change in AHI

Correlation ΔECFV and ΔAHI

Lyons 2015, Am J Respir Crit Care Med;11:1287-1294

Nephrotic syndrome: Rostral fluid shift

- 23 pts, 45±19 yrs, BMI 25±6, eGFR 94±45
- Proteinuria, hypo-albuminemia, leg edema
 Steroid responsive
 - Hydration fraction (TBW, % body wt) fell 14±12%
- Baseline PSG: 11 pts had OSA (RDI 35±8)
- Follow up PSG 8.1±2.6 mths later

Tang 2012, Nephrol Dial Transplant;27:2788-2794

Nephrotic syndrome: Rostral fluid shift

Tang 2012, Nephrol Dial Transplant;27:2788-2794

ESRD: Renal Replacement Therapy (RRT) - Impact on sleep apnea

- Standard RRT
 - Conventional hemodialysis (CHD)
 - Chronic ambulatory peritoneal dialysis (CAPD)
- Intensive RRT
 - Nocturnal hemodialysis (NHD)
 - Nocturnal peritoneal dialysis (NPD)
 - Kidney transplant

Kennedy 2018, J Nephrol;31:61-70

Nocturnal hemodialysis (NHD) vs CHD

```
14 pts, CHD, 45±9 yrs, BMI 26±6
– OSA (7 pts), CSA (1 pt)
```


Hanly 2001, N Engl J Med; 344:102-107

Nocturnal hemodialysis (NHD) vs CHD

Hanly 2001, N Engl J Med; 344:102-107

ESRD/OSA: Ventilatory instability

- 24 pts, CHD, 31-68 yrs
 - PSG: Apneic (AHI≥15) vs non-apneic (AHI<15)</p>
- CHD converted to NHD
 - Apneic "responders": AHI fell>50% and/or <15
 - Apneic "non-responder"
- Ventilatory response to hypercapnia
 Modified Read rebreathing technique

Beecroft 2009, Sleep Medicine;10:47-54

Ventilatory response to Hypercapnia -Apneic responders vs non-responders

Ventilatory sensitivity to hypercapnia reduced following conversion from CHD to NHD in apneic responders

Beecroft 2009, Sleep Medicine;10:47-54

Change in ventilatory sensitivity -Correlated with change in AHI

NHD reduced ventilatory sensitivity - Potential mechanisms

• Uremia

- Better clearance of toxins, middle molecules

- Sympathetic nervous system activation

 Reduced by NHD
- Ultrafiltration

- Resolution of interstitial pulmonary edema

Nocturnal Peritoneal Dialysis (NPD) vs CAPD

- 24 ESKD pts, 51±13 yrs, BMI 21±4
 Cycler-assisted NPD (8 wks) vs CAPD
- PSG on NPD vs CAPD

Bioelectrical impedance analysis

 Change in hydration fraction (HF=TBW, % wt)

Tang 2006, J Am Soc Nephrol;17:2607-2616

Nocturnal Peritoneal Dialysis (NPD) vs CAPD

Tang 2006, J Am Soc Nephrol;17:2607-2616

Nocturnal Peritoneal Dialysis (NPD) vs CAPD

-50

Tang 2009, Clin J Am Soc Nephrol;4:410-418

Kidney Transplantation

Reference	All	Apneic	AHI Pre TP	AHI Post TP	Comments
	n	n			
Jurado-Gamez	9	3	10±11	4.9±6.1	
2008					
Beecroft 2009	18	11	20±15	24±21	27% "responders"*
Rodrigues 2010	34	9	5.3±7.3	3.1±4.5	
Lee 2011	20	12	13.5 (2-40)	4.5 (0-20)	66% "responders"

* Responder = AHI reduced>50% and/or AHI<10/hr

No consistent benefit

- Heterogenous group
 - Pre-existing SDB not related to ESKD
 - New risk factors for SDB post TP eg weight gain
- No mechanistic studies
 - Phenotype

Implications for Management

- Consider whether un-recognized OSA is contributing to symptoms
 - Overlapping symptoms
- Awareness of *potential* for OSA/hypoxemia to injure the kidney
 - Benefit of OSA treatment to kidney function not established
- Consider treatment of OSA/hypoxemia in specific phenotypes
 - Resistant hypertension in patient with co-existing CKD
 - Accelerated decline in kidney function despite conventional CKD Tx

Implications for Management

•Optimize correction of volume overload •Predominant mechanism for pathogenesis of OSA in ESKD

Consider CPAP trial in symptomatic patient
May require management of co-existing insomnia, RLS

Intensification of RRT does not guarantee correction of OSA
 Clinical and objective monitoring follow up required
Acknowledgements

- Nephrology
 - Sofia Ahmed, Brenda Hemmelgarn
 - Darlene Sola, Tanvir Turin
- Students
 - David Nicholl, Ann Zalucky
 - Jaime Beecroft, Andrew Beaudin, Alex Rimke
- Sleep Centre
 - Jill Raneri
 - Sleep physicians
- SAVE trial investigators
 - Doug McEvoy, Kelly Loffler
- Canadian Sleep & Circadian Network investigators

Cumming School of Medicine Sleep Research Program